Creatinine: An Inaccurate Measure of Renal Function in Men with Testosterone-Induced Muscle Hypertrophy

Kevin Campbell, MD 1,2, Michael Maidaa, MD 1, Bobby Brunner, MD 2, Oscar Velazquez, BS 2, Larry Lipshulz, MD 2

1Department of Urology, University of Florida COM, Gainesville, FL, USA
2Scott Department of Urology, Baylor College of Medicine, Houston, TX, USA

INTRODUCTION

- Renal function is often estimated using validated study equations and serum creatinine (Cr) as a filtration marker.
- Cystatin C may be used as a more accurate alternative to Cr
 - Found in virtually all tissues and body fluids
 - Low molecular weight and removed by glomerular filtration
 - Avoids limitations related to diet and muscle mass
- Elite athletes are often noted to have an elevated body mass index (BMI)
 - Despite overall favorable level of percent body fat (PBF) and fitness.
 - Due to an increased level of body muscle
- Objective: This study evaluates the relationship between Cr, cystatin C, BMI, and PBF in fitness and elite athlete populations.

METHODS

- Elite athletes (pursuing competition in professional or amateur sporting events) presenting to a men’s health tertiary referral center with testosterone-induced muscle hypertrophy
- Cr and cystatin C were plotted for correlation in best fit models for percentage increments of BMI (normal, overweight, and obese) and PBF

RESULTS

- 228 elite athletes were identified and stratified by BMI and PBF
 - Majority were “overweight” (n=88) or “obese” (n=129) based on BMI
 - No clinically significant correlation between Cr and cystatin C for normal BMI
 - Overweight, R²=0.2625
 - Obese, R²=0.2719
 - Correlation between cystatin C and Cr increased with increase in PBF
 - 10–20%, R²=0.1722
 - 20–30%, R²=0.4914
 - >30%, R²=1.0000

CONCLUSIONS

- Our study affirms that elite athletes maintain an increased BMI and low PBF.
- Cystatin C may demonstrate a more accurate reflection of renal function in these patients, as Cr may be inaccurately elevated.