Pathologic Outcomes After Neoadjuvant Chemotherapy in Primary versus Secondary Muscle Invasive Bladder

Cancer – A Single Institution Experience

Hiroko Miyagi, Padraic O'Malley, Paul Crispen

University of Florida College of Medicine, Department of Urology, Gainesville, FL

INTRODUCTION

- Neoadjuvant chemotherapy (NAC) followed by radical cystectomy (RC) is the standard of care for muscle invasive bladder cancer (MIBC)
- Retrospective studies have demonstrated that patients with non-muscle invasive bladder cancer (NMIBC) progressing to MIBC (secondary MIBC) have worse clinical outcomes than similarly treated patients with primary MIBC
- Thought to be related to the changes in tumor genomics due to prior treatment in NMIBC patients
- It is important to improve patient selection for NAC to prevent toxicity of therapy as well as delays to RC
- It is unknown whether pathologic response rates differ between primary and secondary MIBC patients undergoing NAC and RC
- Objective: To investigate the pathologic response rates of patients with primary versus secondary MIBC treated with NAC

METHODS

- Retrospective review of RC patients at University of Florida from 2011 to 2021
- Inclusion criteria:
- Patients treated with NAC and RC
- Patients presenting with MIBC at time of cancer diagnosis were defined as primary MIBC
- Patients with a history of intravesical therapy who progressed to MIBC were defined as secondary MIBC
- 169 primary MIBC and 34 secondary MIBC patients identified
- Rates of complete response (pT0) and downstaging (<pT2) were investigated

RESULTS

		Primary MIBC NAC + RC	Secondary MIBC NAC + RC	
Variables		(N=169)	(N=34)	p value
Median age at RC		68	72	0.18
Male gender, n (%)		133 (79)	30 (88)	0.24
Clinical stage, n (%)				0.42
	cT2	147 (87)	27 (79)	
	cT3	22 (13)	7 (21)	
Pathologic stage, n (%)				0.52
	pT0	29 (17)	7 (21)	
	рТа	3 (2)	0 (0)	
	pTis	25 (15)	3 (9)	
	pT1	6 (4)	1 (3)	
	pT2	36 (21)	3 (9)	
	pT3	43 (25)	9 (26)	
	pT4	27 (16)	11 (32)	
ypN stage, n (%)				0.25
	pN0	136 (80)	24 (71)	
	pN1	10 (6)	2 (6)	
	pN2	10 (6)	6 (18)	
	pN3	6 (4)	1 (3)	
	pNx	7 (4)	1 (3)	
Variant histology on RC speci	men			
Pr	resent	49 (29)	8 (24)	0.52
Surgical margins, n (%)				
Po	sitive	33 (20)	9 (26)	0.36
Excluding ureter and prostate		22 (13)	8 (24)	0.19

Table 1. Baseline demographics and clinical characteristics of patients with primary and secondary MIBC who were treated with NAC prior to RC (n=203)

Authors	Type of study	N	Primary MIBC w/ pT0	Secondary MIBC w/ pT0		Primary MIBC w/ downstaging*	MIBC w/	p value
Pietzak et al		245 P-MIBC						
(2018)	Retrospective	43 S-MIBC	15%	0%	NR	45%	26%	0.02
D'Andrea et	Retrospective,	350 P-MIBC						
al (2022)	multi-institutional	64 S-MIBC	33%	17%	0.01	51%	34%	0.02
Benidir et al		285 P-MIBC						
(2022)	Retrospective	48 S-MIBC	28%	33%	0.41	51%	54%	0.67
Miyagi et al		169 P-MIBC						
(2023)	Retrospective	34 S-MIBC	17%	21%	0.33	37%	32%	0.70

Table 2. Summary of other studies investigating response to NAC in primary and secondary MIBC. *Downstaging defined as <pT2 or <pT1.

Figure 1. Pathologic outcomes in primary vs secondary MIBC after NAC and RC

Primary MIBC

CONCLUSIONS

Secondary MIBC

- Controversial data exist regarding benefit of NAC in secondary MIBC (Table 2)
- We found no significant association between tumor status and pathologic outcomes (Figure 1)
- pT0 rate of 17% vs 21% for primary vs secondary MIBC
- <pT2 rate of 37% vs 32% for primary vs secondary MIBC</p>
- Our findings are in accordance with results reported for a retrospective study of 333 patients
- Our findings support the rationale to continue to counsel patients with MIBC to undergo NAC prior to RC
- Investigation of CSS and OS outcomes is needed to further evaluate the clinical benefit of NAC in secondary MIBC patients
- Investigation into tumor genomics of MIBC patients will improve our ability to predict tumor response to NAC